
asss User’s Guide

September 10, 2003

1 Introduction

asss is a new server for Subspace/Continuum. It was written from scratch by Grelminar
(grelminar@yahoo.com), with help from several other people (see the Acknowledgements
section). The name asss stands for “a small subspace server.”

Although care has been taken to remain compatible with the original Subspace server,
known as subgame, players, and especially staff and admins, should be aware that asss is
a different piece of software. It has many features that subgame is missing, but it is also
missing some from subgame. The features that are common to both may work different.
They will have different bugs. In short, don’t expect everything to work the same as in
subgame, because it won’t.

1.1 Platform and Requirements

asss was developed primarily on a Linux system on the Intel x86 platform. Although some
effort has been spent making it run on Windows also, people running it on non-Linux
systems should not expect everything to work perfectly: there may be missing features
and it may run slower.

The requirements for running asss on Linux are pretty minimal: The system should
have the pthreads library (any recent Linux system should), Berkeley DB 4.0 or greater
(older versions won’t work), and zlib. It also has optional mysql support, currently used
only for the built-in alias database. To compile asss from source (on either Linux or
Windows), the include files for those libraries must be installed, as well as a C compiler. If
you’ve obtained the source from CVS, you’ll also need the Python interpreter in order to
generate certain files. If you’re using a tarball instead, it will come with those files present
already.

If you’re missing mysql, you’ll have to edit the Makefile by hand and remove database.so
from the list of libraries to build.

If you’re missing Berkeley DB, you can still build asss, but it’ll be missing all support
for scores and any other persistent information. You’ll have to remove scoring.so and
dbtool from the list of binaries to build.

Currently, only 32-bit Intel platforms are supported because of byte-order issues. Even-
tually, asss will be able to run on other architectures, but for now, Intel will have to do.

1

2 File Layout

The server always access files relative to the directory it was started from, which must
have certain files and directories in certain places. That means that to run multiple copies
of the server on one machine, you should make sure that each one is started from its own
home directory.

Here’s what a typical machine’s file layout should look like:

/home/asss
+ bin
| + asss
| + dbtool
| + core.so
| + commands.so
| + flags.so
| + balls.so
| + ...
|
+ zone1
| + news.txt
| + bin (symlinked to ../bin)
| + defaultarena
| | + arena.conf
| |
| + arenas
| | + duel
| | | + arena.conf
| | |
| | + pb
| | + arena.conf
| | + balls.conf
| | + pb.lvl
| |
| + conf
| | + global.conf
| | + modules.conf
| | + groupdef.conf
| | + groupdef.dir
| | | + default
| | | + mod
| | | + smod
| | | + sysop
| | |
| | + defs.h
| | + svs
| | + svs.conf

2

| | + prizeweights
| | + misc
| | + ship-warbird
| | + ...
| |
| + log
| | + asss.log
| | + asss.log.1
| |
| + maps
| | + zone1-pub.lvl
| | + another.lvl
| |
| + data
| + data.db
|
+ zone2
+ bin (symlinked to ../bin)
+ ...

The most important directory is bin. This directory should contain the main asss
binary, as well as all files containing modules to be loaded by the main binary. To ease
administration, it is not recommended that each zone on a machine have a full copy of the
bin directory. Instead, bin should be a symlink to a shared directory containing binaries.

conf contains config files that affect the server as a whole. Among the important files
are modules.conf, which specifies the list of modules to load at startup, global.conf,
which contains config settings for the whole server, groupdef.conf, which describes which
capabilities belong to each group, and staff.conf, which assigns groups to various play-
ers. groupdef.conf uses files in the groupdef.dir subdirectory to ensure more powerful
groups have all the capabilities of lesser ones.

Also in conf is defs.h, which includes a bunch of other config files that are typically
symlinks to files in the source code directory. This is done to ensure the server and
config files agree on numerical values for various constants. All .conf files automatically
#include defs.h.

conf can also contain partial config files for arenas to include. The default directory
structure contains an svs directory, with the Standard VIE Settings, split into multiple
files, by ship and function.

log will be used by the server to deposit any log files that it creates.
data is used to keep the database holding all persistent information, including scores.

Information for all arenas is kept in the same database file.
maps is an optional directory that the server will search for .lvl files in. These files

can also be located in arena directories, so this isn’t a required directory. It might simplify
administration, though, to keep all map files in this directory.

Each arena gets its own directory for storing settings related to that arena, as well as
maps and .lvz files.

The default arena (also called the public arena) keeps its data in the directory defaultarena,

3

relative to the base directory for the zone. All other arenas keep their files in arenas/foo,
where foo is the name of the arena.

Each arena directory must contain a file named arena.conf, which contains the settings
for that arena. For ease of administration, this file may #include other config files in either
the same directory, or the global conf directory.

The file news.txt should be located in the base of the zone directory as well, unless
another location is specified in global.conf.

2.1 Running asss

2.1.1 Command line arguments

There are currently three things you can give asss on the command line:

• A file name on the command line will be interpreted as the name of a directory
containing the zone files (as described in the last section). If no directory is specified,
the current directory will be used.

• The optional switch --daemonize (abbreviated -d) tells it to fork into the back-
ground before starting up. You might want to use this when running asss from a
startup script.

• Another switch, --chroot (abbreviated -c), tell is to attempt to chroot to the zone
directory before starting up. See the next section for more information on this.

2.1.2 Running in a chroot jail

If you want to increase the security of your host a bit, you can run asss in a chroot jail.
This means that it will run with its root directory set to the zone directory, and it won’t
be able to access any files outside of that directory.

You need to do a bit of preperatory work before chroot can work. You’ll need to
make a lib directory in the zone directory containing all the shared libraries needed by
any modules you’ll be loading. On my machine, I needed to put the following files from
/lib and /usr/lib in there: ld-linux.so.2,, libc.so.6, libpthread.so.0, libz.so.1,
libm.so.6, and libdb-4.0.so. You’ll also have to make sure that nothing within the zone
directory is a symlink pointing outside of the zone directory. So you’ll need a separate
copy of the bin directory and shared settings files for each separate zone. It’s also a good
idea (although not strictly necessary) to create an etc directory with limited passwd and
group files, and also things like ld.so.conf, hosts, and nsswitch.conf.

In order to do a chroot, asss needs to be run as root. It won’t continue running as root,
of course: as soon as it successfully chroots, it drops its priviliges and runs as a normal
user. The user it runs as depends how it was run: if the asss binary is installed setuid-root,
it will always drop to the user who invoked the binary. If it’s actually run by the root user,
it will use the contents of the USER environment variable to control which user to drop to.
So to run it as user “nobody” from a script running as root (like rc.local), you can run
something like env USER=nobody /path/to/asss /zone/dir --chroot --daemonize.

4

3 Modules

Almost all of the functionality of asss is split into many small modules. The modules are
in separate libraries with the extension .so (on Unix) or .dll (on Windows). One shared
library can contain any number of modules.

There are currently 69 modules that are part of asss, but each zone might have some
custom-developed modules for their zone as well.

When the server starts up, it loads all of the modules listed in the file modules.conf.
Once it’s running, more modules can be loaded with the ?insmod command, and modules
can be unloaded with ?rmmod. The current list of loaded modules can be examined with
?lsmod.

The modules.conf file has a special format that’s slightly different from the rest of the
config files. It has no sections. Each line should contain a “module specifier.” A module
specifier is just something of the form filename:module. The filename part should be the
name of the file containing the module, without the extension. The module part should
be a module name that’s contained in the file. The colon separating them is just a colon.
Comments are indicated by an initial semicolon or pound sign.

If a particular zone has no need for a particular module (e.g., Chaos zone doesn’t have
any flags or balls, so it doesn’t need those modules), it should’t load those modules. Only
loading the modules that are actually used for a zone will decrease the memory usage of
the server, and make it run faster.

Once a module is loaded into the server, it has full access to the server’s data, including
player IP addresses, machine id’s, scores, and passwords. It can also access files on the
machine it is running on, and make network connections, and it can easily crash or deadlock
the server. Thus, admins and sysops should be careful to only load modules from sources
that they trust.

In the future, it will be possible for some modules to run in separate processes or even
separate machines, it will be possible to write modules in languages besides C, and it will
be possible to limit the information that modules have access to.

4 Capabilities

The old Subspace server supported a very limited notion of authority: There were modera-
tors, super moderators, and sysops. Each level allowed access to more and more commands.
Additionally, moderators and above could see private freqs and private arenas, and bypass
freq and arena size limits.

asss is much more flexible. It lets sysops and admins assign any set of powers to
any group of people. In the asss model, each of the above powers, plus a few more, like
energy viewing, is assigned a capability name. Each command also gets a capability name
(actually, each command gets two, one for using the command with public messages, and
one for using it with private messages). Whenever the server needs to determine if a player
can take a certain action, it asks the capability manager, which replies either yes or no.

The server comes with one capability manager, contained in the capman module, but
there’s no reason why another one couldn’t be used if your zone has peculiar needs for
assigning people powers.

5

4.1 Capability names

The most common capability names are for commands. If a player tries to run a command,
say, ?lastlog, the server would query the capability manager with the name cmd_lastlog.
If a player uses a command as a private message, as in :annoying_player:?freqkick,
the capability name used would instead be privcmd_freqkick.

There are several other capabilities that are currently used in the server:

• seeprivarena controls whether private arena names are sent to a player for the
?arena command.

• seeprivfreq determines if a player sees private freqs in the freq listing.

• findinprivs is needed by a player running ?find for the server to report the names
of private arenas. (Not implemented yet.)

• seeepd allows players to see other ship’s energy and specials from spectator mode.
(“epd” stands for extra position data.)

• seesysoplogall allows a player to see all important log messages in the zone.

• seesysoplogarena only allows a player to see only important log messages having
to do with the arena he is currently in.

• seemodchat allows players to see the moderator chat.

• sendmodchat controls who can send moderator chat messages. Usually, these two
capabilities would be given to the same people.

• uploadfile allows a player to upload files. Note that the player must also have the
cmd putfile to upload a file using that command.

• bypasslock allows players to switch ships even though the arena or themselves have
been locked into a ship or into spectator mode by a staff member.

4.2 The default capability manager

The default capability manager works with groups. Each group has a set of capabilities,
and players are assigned to groups. To check if a player has a certain capability, the
capability manager simply checks if the group he’s in has that capability.

To determine which groups have which capabilities, the groupdef.conf file is used. It
should have a section for each group, and a line within that section for each capability.

To determine which players belong to which groups, the staff.conf file is used. It
should have a single section, called “Staff,” with player names as keys and group names
as values. Players not listed in the staff file will be assigned to the group “default.” If a
player is assigned a group in staff.conf, he will be in that group in any arena he enters.

Sometimes, however, a sysop will want to give certain players powers in only certain
arenas. Each arena’s config file can also contain a “Staff” section. Groups assigned
through arena config files will only be valid in that one arena. Additionally, the global

6

staff.conf can be used to give a player powers in only certain arenas by using a value
like “arena1:agroup arena2:othergroup.”

The command ?setgroup can be used to control group assignment.
The default capability manager also supports passwords for groups, although using this

feature is strongly discouraged. It is intended for sysops or other staff members to gain
privliged access when the zone isn’t connected to a billing server to provide authentication.
But there’s a better way to do this: if you load the auth_file module before billing,
the server will fall back to using auth_file when the billing server is not connected. Staff
members can set passwords using the ?passwd command (specific to auth_file), and they
will have access to their usual group.

4.2.1 Emulating the old system

Using the default manager, it’s relatively easy to set up asss to emulate the old server’s
moderator, super moderator, and sysop model: The groupdef.conf file looks like this:

; conf/groupdef.conf

[default]
#include groupdef.dir/default

[mod]
#include groupdef.dir/default
#include groupdef.dir/mod

[smod]
#include groupdef.dir/default
#include groupdef.dir/mod
#include groupdef.dir/smod

[sysop]
#include groupdef.dir/default
#include groupdef.dir/mod
#include groupdef.dir/smod
#include groupdef.dir/sysop

The files in groupdef.dir contain simply lists of capabilities. Each group includes the
file for itself, as well as the files for the lesser powerful groups.

5 Logging

asss has extensive logging capabilities. Any remotely interesting event in the game will
generate a log message, which will be passed to any number of loaded logging handlers.

7

5.1 Levels

There are five importance levels defined for log messages: DRIVEL is unimportant infor-
mation that you probably don’t want to see, but is logged anyway, just in case. INFO is
basic information about common, unexceptional events. MALICIOUS is for exceptional
conditions that are caused by players sending bad data to the server. These might be
indications of cheating or other illicit activity. They also might be caused by abnormal
network conditions. WARN is for error conditions that can be worked around, or aren’t
too catcatastrophic. ERROR is for really really horrible error conditions. These usually
indicate misconfigured servers or bugs in the server itself.

5.2 What is logged?

There are currently 304 distinct log messages in the server. By type, there are 33 ERROR
messages, 84 WARN messages, 67 MALICIOUS messages, 51 INFO messages, and 69
DRIVEL messages.

5.3 Filtering

Log handlers support a common method of filtering that give you lots of control over which
handlers see which messages.

By default, all messages are seen by all handlers. To limit messages to a handler
log_foo, create a section with the same name as the handler in global.conf. The keys
in that section will be module names, and the values will be a set of priority levels to
allow, specified by listing the first letters of the allowed levels. The special key all will be
used for modules not listed. For example:

; this keeps flag positions and ball fires from appearing in the log
; file, but allows other DRIVEL messages.
[log_file]
all = DIMWE
flags = IMWE
balls = IMWE

; this allows all messages to go to the console except those from
; cmdman.
[log_console]
all = DIMWE
cmdman = none

; this lets only important messages (malicious and error) go to sysops
[log_sysop]
all = ME

8

5.4 Commands

In general, all commands run by anyone are logged, at level INFO, along with their pa-
rameters and targets. Some commands, however, contain personal or sensitive information
that might be abused by zone staff who can view logs. To prevent this abuse, there is a
hardcoded list of commands whose parameters don’t get logged (they get replaced by ...
in the log messages).

5.5 Handlers

The current log handlers are:

• log_console simply writes all log messages to standard out, which is usually the
terminal that asss is started from. Usually, asss will run detached from any terminal,
so this is primarily intended for debugging.

• log_file write all log messages to a file. The name of the file is controlled by
the Log:LogFile configuration option. The command ?admlogfile may be used
to flush or reopen the log file while the server is running. asss always appends to
a single file. If log rotation is desired, it should be accomplished with an external
program such as logrotate.

• log_sysop informs players of log events within the game. “Important” messages, as
defined by the logging filter, are sent to players with the capabilities seesysoplogall
and seesysoplogarena. Players with the latter capability only see log messages
that originated in the arena. This logging module also implements the ?lastlog
command.

6 New Features

6.1 Freq Ownership

Requires module: freqowners
If the arena controller allows it, private freqs can now be owned. The first player to
move to a particular private freq becomes an owner for that freq. An owner can kick
non-owners off of his freq by sending them the command ?freqkick. An owner can give
owner privileges to other players by sending them the command ?giveowner. The spec
freq can’t be owned.

The config variable Team:AllowFreqOwners controls whether to enable freq ownership.
It defaults to on.

6.2 Arena limiting

Requires module: arenaperm
Any arena can specify a General:NeedCap value in it’s config file. If present, players will
not be allowed to enter the arena unless they have the specified capability.

9

6.3 Autowarping

Requires module: autowarp
Using the region system, certain areas of the map can be configured to warp a player who
enters them to somewhere else on the map.

FIXME: include details about specifying autowarp settings.

6.4 Moderator chat

asss includes an actual moderator chat system, which should be an improvement over the
?cheater-based systems in use currently.

Mod chat messages begin with a backslash (\), and are displayed in dark red (the
same color as sysop warning messages). Who is allowed to send and recieve mod chat is
controlled by two capabilities: seemodchat and sendmodchat, which do what they sound
like.

6.5 Multiple commands

You can specify multiple commands on one line by dividing them with vertical bars (|).
The subsequent commands (after the first bar) don’t need question marks (although they
are ignored if present). You can send multiple private commands, but you can’t send both
public and private commands on the same line.

6.6 Built-in alias database

Requires module: mysql, aliasdb
asss includes a hastily-written alias database. The alias database depends on mysql sup-
port, although it’s written so that it should be easy to port to another relational database
if necessary.

All logins are automatically entered if the aliasdb module is loaded. There are several
ways to query the database: ?qalias isn’t written yet, but it will be the most useful
interface when it’s done. ?qip allows you to query by IP address range. ?rawquery allows
you to make custom queries with most SQL commands. You can find the documentation
for these commands in the Commands section.

The ?last command uses the alias database to find the last 10 people to log in.

6.7 Authentication

Ok, so this isn’t new, but it’s greatly expanded in functionality: authentication can now
be done with things other than billing servers, and some authentication modules can be
“stacked.”

For example, one useful auth module is auth_file, which uses a file of hashed pass-
words to authenticate users. This module is intended for use by private servers who want
to allow a small group of people (say, a squad) to play together, and not allow anyone
else in. It can also be used as a fallback module by the billing module (which acts as
an auth module, among other things). This means if the billing server is connected, login

10

requests will be authenticated against the billing server, but if it isn’t, they get passed to
auth_file.

If the user is listed in the file and supplies a correct password, he will be allowed access
and be granted groups. If not, he will be either accepted or rejected depending on the value
of General:AllowUnknown setting in passwd.conf. If an unknown player is allowed, he
will not be assigned groups based on name. (That will also not happen if no auth modules
are loaded.)

The auth_file module also allows you to lock a specific player name out of a zone.
To use a fallback module for the billing module, simply make sure that that module

is loaded before billing is loaded.

6.8 Multiple “public” arenas

asss supports a general player placement interface to decide which arena a player should be
placed in upon entering the zone. The most useful arena placing interface is ap_multipub,
which has the effect of creating multiple “public” arenas.

To use ap_multipub, simply make sure it’s loaded from modules.conf (somewhere
near the end is good). It is controlled by two settings in the global config file: Gen-
eral:PublicArenas is a whitespace-separated list of public arena types (not names). For
example, if General:PublicArenas is set to “pb turf wz,” the server will start placing peo-
ple in the arena named “pb1,” then when that gets full, it will move to “turf1,” then
“wz1,” then “pb2,” etc. To control how many people it will put in each arena, use Gen-
eral:DesiredPlaying, which is a count of playing players (i.e., not spectators).

6.9 Bandwidth Throttling

asss supports bandwidth throttling for players on slower connections. To make the game
fairer, packets are prioritized depending on their function. For example, weapons packets
will be preferred over chat messages when deciding how to use up the last few bytes of
alloted bandwidth. The server will also reserve a certain percentage of the total bandwith
for packets of certain priorities. Techniques similar to those used in modern TCP imple-
mentations are used to dynamically adjust the bandwith limit to players based on their
connection quality.

7 Lag Control

7.1 Lag Measurement

Lag, which includes both latency and packetloss, is difficult to measure accurately and
control. asss does as well as it can with limited information.

There are several ways that the server collects latency information: Position packets
sent from the client contain timestamps that the server can compare to its own current time
to determine approximately how long the packet took to get there. This is complicated
by the fact that the times on the server and client aren’t always perfectly synchronized.
Reliable packets need to be acknowledged, and the round-trip time between the sending
of a reliable packet and the reciept of its acknowledgement can be measured. That will

11

be equal to approximately twice the one-way latency, but that isn’t exact either because
the two trips might take different amounts of time. Finally, the client can measure latency
using the same techniques, and periodically send its results to the server for processing.

Packetloss is slightly easier: the client and server can keep track of how many packets
each has sent and recieved, and compare numbers periodically. Reliable packets also
provide oppertunities to measure packetloss: if a reliable packet isn’t acknowledged within
the timeout, the server knows either the original packet or the acknowledgement got lost. If
a reliable packet is recieved twice, the server knows the acknowledgement got lost. Again,
the client can also measure these numbers and send the results to the server.

7.2 Settings and Actions

There is one global setting for lag, Lag:CheckInterval which controls how often each
player’s lag numbers are checked to perform actions. It’s specified in ticks. Each arena
can specify its own lag limits. All of the parameters described below go in the Lag section
in the arena’s configuration file (or a file included from it).

There are four main values that lag actions are based on: average ping (determined by
an exponential averaging scheme, based on S2C, C2S, and reliable pings), S2C packet loss,
S2C weapons packet loss, and C2S packet loss. Each value has four thresholds associated
with it: one controls when a player gets forced into spectator mode, one controls when a
player is allowed to pick up flags and balls, and two control weapons ignoring. The units of
the settings concerning latency are milliseconds, and the units of the settings concerning
packetloss are tenths of a percent (i.e., fractions out of 1000).

Forcing into spec is easy enough: if the value is over the threshold when a player is
examined, he’s forced into spec. Disabling flags and balls also works on a simple threshold:
if the value is above it, the player won’t be allowed to pick up any flags or balls. If he’s
currently carrying a flag or ball, and one of the values moves over the limit, he’ll get to
keep it.

Weapon ignoring is slighly more complicated: There are two thresholds, one to start
ignoring weapons, and one where all weapons will be ignored. If all of the values are below
their respective starting thresholds, none of the player’s weapons will be ignored. If one of
them is higher, a percent of incoming weapons from that player to be ignored is calculated
by interpolation between the starting threshold (0%) and the higher threshold (100%).
If multiple values are above their starting threshold, the percent of weapons that gets
ignored is the maximum of the percent ignored from each value. C2S packetloss doesn’t
cause weapon ignoring, since C2S packetloss generally gives the player a disadvantage, not
an advantage.

The names of these settings are: PingToSpec, PingToStartIgnoringWeapons, PingToIgnoreAllWeapons,
PingToDisallowFlags, S2CLossToSpec, S2CLossToStartIgnoringWeapons, S2CLossToIgnoreAllWeapons,
S2CLossToDisallowFlags, WeaponLossToSpec, WeaponLossToStartIgnoringWeapons, WeaponLossToIgnoreAllWeapons,
WeaponLossToDisallowFlags, C2SLossToSpec, and C2SLossToDisallowFlags. Their
functions should be clear from their names and the above description.

One final setting SpikeToSpec, determines the length of time that the server can recieve
no packets from a player before forcing him into spectator mode.

12

8 Virtual Servers

asss allows one server process to apear to clients as several different servers. The primary
advantage of this feature is that players connecting to all virtual servers are treated the
same internally and can move between arenas and communicate as if they connected to
the same server.

To create virtual servers, you have to tell the net module to listen on more than
one port. You do this by creating additional settings in the “Net” section of global.conf
named “Listen1,” “Listen2,” etc. Each setting must specify a port, and can also optionally
specify a virtual server identifier, and a specific IP address to bind to.

Virtual server identifiers are used in several ways: if you are using an arena placing
module that supports them (e.g., ap_multipub), the server id will be used as the arena
basename to place players who connect through that port in.

The directory module also supports virtual servers: it will create one directory en-
try for each virtual server. The server name and description can be different for each
virtual server. To specify them, create “Name” and “Description” settings in the section
“Directory-servername” for each virtual server identifier. If either of those settings is
missing from that section, it will fall back to their values in the “Directory” section.

Finally, an example to make this all clear:

;; global.conf

[Net]
;; listen on 3 different ports:
; players connecting to port 2000 will be send to a random arena.
; players who connect to 5000 will be sent to pb1, pb2, etc. port 7500
; will send them to aswz by default, and so on.
Listen1 = 2000
Listen2 = 5000:pb
Listen3 = 7500:aswz
; just as an example, this will force the server to listen on an
; internal interface only, and send those players to a secret arena:
Listen4 = 192.168.0.23:3300:#secret

[Directory]
;; point to the directory servers you want to be listed on. using
;; default port and password.
Server1 = sscentral.one.com
Server2 = sscentral.two.com

;; now describe what this server is called by default:
Name = A Testing Zone
Description = Testing happens here.

[Directory-pb]
;; specify the name and description for pb:

13

Name = PowerBall
Description = Play with balls!

[Directory-aswz]
;; specify only name for aswz:
Name = A Small WarZone

9 Command Reference

These are all of the commands that the server currently recognizes. Not all of them will
always be available. If a command requires a module that’s not one of the core modules,
that will be indicated above its description. Most other commands require the playercmd
module.

Possible targets are listed for each command. The targets can be “none,” which refers
to commands typed as public (arena) messages, “player,” for commands that can target
specific players, “freq,” for commands that can target a whole freq at a time (with either
’ or "), or some restriction of one of those.

Each command also describes any required or optional arguments.
Note that the section doesn’t list who is allowed to run a particular command, because

that is determined by the capability manager, which can be fully customized for each
particular server.

a

Possible targets: player, freq, or arena
Arguments: <text>
Displays the text as an arena (green) message to the targets.

aa

Possible targets: player, freq, or arena
Arguments: <text>
Displays the text as an anonymous arena message to the targets.

admlogfile

Possible targets: none
Arguments: flush or reopen
Administers the log file that the server keeps. There are two possible subcommands: flush
flushes the log file to disk (in preparation for copying it, for example), and reopen tells
the server to close and re-open the log file (to rotate the log while the server is running).

arena

Possible targets: none
Arguments: [all]

14

Lists the available arenas. Specifying all will also include empty arenas that the server
knows about.

attmod

Possible targets: none
Arguments: [-d] <module name>
Attaches the specified module to this arena. Or with -d, detaches the module from the
arena.

az

Possible targets: none
Arguments: <text>
Displays the text as an anonymous arena message to the whole zone.

ballcount

Possible targets: none
Arguments: <number of balls to add or remove>
Increases or decreases the number of balls in the arena. Takes an argument that is a
positive or negative number, which is the number of balls to add (or, if negative, to
remove).

billingadm

Possible targets: none
Arguments: status—drop—connect
The subcommand ’status’ reports the status of the billing server connection. ’drop’ dis-
connects the connection if it’s up, and ’connect’ reconnects after dropping or failed login.

billingid

Possible targets: player or none
Arguments: none
Displays the billing server id of the target player, or yours if no target.

botfeature

Possible targets: none
Arguments: [+/-seeallposn]
Enables or disables bot-specific features. seeallposn controls whether the bot gets to see
all position packets.

15

cheater

Possible targets: none
Arguments: <message>
Sends the message to all online staff members.

disablecmdgroup

Possible targets: none
Arguments: <command group>
Disables all the commands in the specified command group and released the modules that
they require. This can be used to release interfaces so that modules can be unloaded or
upgraded without unloading playercmd (which would be irreversable).

dropturret

Requires module: autoturret
Possible targets: none
Arguments: none
Drops a turret right where your ship is. The turret will fire 10 level 1 bombs, 1.5 seconds
apart, and then disappear.

enablecmdgroup

Possible targets: none
Arguments: <command group>
Enables all the commands in the specified command group. This is only useful after using
?disablecmdgroup.

endinterval

Possible targets: none
Arguments: [-g] [-a <arena group name>] <interval name>
Causes the specified interval to be reset. If -g is specified, reset the interval at the global
scope. If -a is specified, use the named arena group. Otherwise, use the current arena’s
scope. Interval names can be g̈amë, r̈eseẗ, or m̈aprotation̈.

flaginfo

Possible targets: none
Arguments: none
Displays information (status, location, carrier) about all the flags in the arena.

16

flagreset

Possible targets: none
Arguments: none
Causes the flag game to immediately reset.

forceding

Requires module: turf reward
Possible targets: none
Arguments: none
Forces a reward to take place immediately in your current arena.

forcestats

Requires module: turf stats
Possible targets: none
Arguments: none
Displays stats to arena for previous dings.

freqkick

Requires module: freqowners
Possible targets: player
Arguments: none
Kicks the player off of your freq. The player must be on your freq and must not be an
owner himself. The player giving the command, of course, must be an owner.

gamerecord

Requires module: record
Possible targets: none
Arguments: status — record <file> — play <file> — pause — restart — stop
TODO: write more here.

geta

Possible targets: none
Arguments: section:key
Displays the value of an arena setting. Make sure there are no spaces around the colon.

getcm

Possible targets: player or arena
Arguments: none
Prints out the chat mask for the target player, or if no target, for the current arena. The
chat mask specifies which types of chat messages are allowed.

17

getfile

Possible targets: none
Arguments: <filename>
Transfers the specified file from the server to the client. The filename should include the
full relative path from the server’s base directory.

getg

Possible targets: none
Arguments: section:key
Displays the value of a global setting. Make sure there are no spaces around the colon.

getgroup

Possible targets: player or none
Arguments: none
Prints out the group of the target player.

giveowner

Requires module: freqownsers
Possible targets: player
Arguments: none
Allows you to share freq ownership with another player on your current private freq. You
can’t remove ownership once you give it out, but you are safe from being kicked off yourself,
as long as you have ownership.

grplogin

Possible targets: none
Arguments: <group name> <password>
Logs you in to the specified group, if the password is correct.

help

Possible targets: none
Arguments: <command name> — <setting name (section:key)>
Displays help on a command or config file setting. Use ?help section: to list known
keys in that section. Use ?help : to list known section names.

info

Possible targets: player
Arguments: none
Displays various information on the target player, including which client they are using,

18

their resolution, ip address, how long they have been connected, and bandwidth usage
information.

insmod

Possible targets: none
Arguments: <module specifier>
Immediately loads the specified module into the server.

jackpot

Possible targets: none
Arguments: none or <arena name> or all
Displays the current jackpot for this arena, the named arena, or all arenas.

lag

Possible targets: none or player
Arguments: none
Displays basic lag information about you or a target player.

laghist

Possible targets: none or player
Arguments: [-r]
Displays lag histograms. If a -r is given, do this histogram for r̈eliablëlatency instead of
c2s pings.

laginfo

Possible targets: none or player
Arguments: none
Displays tons of lag information about a player.

last

Possible targets: none
Arguments: none
Tells you the last 10 people to log in.

lastlog

Requires module: log sysop
Possible targets: none
Arguments: [<number of lines>] [<limiting text>]
Prints out the last 10 lines in the server log. You can specify a number as an argument,
it will print that many lines instead. If you specify any text as an argument, besides a

19

number, the display will be limited to lines that contain that text. You can specify both
a number and limiting text, just put the number first.

listarena

Possible targets: none
Arguments: <arena name>
Lists the players in the given arena.

listmods

Possible targets: none
Arguments: none
Lists all staff members logged on, which arena they are in, and which group they belong
to.

lock

Possible targets: player, freq, or arena
Arguments: [-n] [-s]
Locks the specified targets so that they can’t change ships. Use ?unlock to unlock them.
By default, ?lock won’t change anyone’s ship. If -s is present, it will spec the targets
before locking them. If -n is present, it will players of their change in status.

lockarena

Possible targets: arena
Arguments: [-n] [-a] [-i] [-s]
Changes the default locked state for the arena so entering players will be locked to spectator
mode. Also locks everyone currently in the arena to their ships. The -n option means to
notify players of their change in status. The -a options means to only change the arena’s
state, and not lock current players. The -i option means to only lock entering players
to their initial ships, instead of spectator mode. The -s means to spec all players before
locking the arena.

lsmod

Possible targets: none
Arguments: none
Lists all the modules currently loaded into the server.

moveflag

Possible targets: none
Arguments: <flag id> <owning freq> [<x coord> <y coord>]
Moves the specified flag. You must always specify the freq that will own the flag. The

20

coordinates are optional: if they are specified, the flag will be moved there, otherwise it
will remain where it is.

netstats

Possible targets: none
Arguments: none
Prints out some statistics from the network layer, including the number of main menu
pings the server has received, the total number of packets it has sent and received, and
the number of buffers currently in use versus the number allocated.

neutflag

Possible targets: none
Arguments: <flag id>
Neuts the specified flag in the middle of the arena.

passwd

Possible targets: none
Arguments: <new password>
Changes your local server password. Note that this command only changes the password
used by the auth file authentication mechanism. The billing server is not involved at all.

pausetimer

Possible targets: none
Arguments: none
Pauses the timer. The timer must have been created with ?timer.

prize

Possible targets: player, freq, or arena
Arguments: see description
Gives the specified prizes to the target player(s).

Prizes are specified with an optional count, and then a prize name (e.g. 3 reps, anti).
Negative prizes can be specified with a ’-’ before the prize name or the count (e.g. -prox,
-3 bricks, 5 -guns). More than one prize can be specified in one command. A count
without a prize name means random. For compatability, numerical prize ids with # are
supported.

putfile

Possible targets: none
Arguments: <client filename>:<server filename>
Transfers the specified file from the client to the server. The server filename must be a

21

full path name relative to the base directory of the server. (Remember, servers running
on unix systems use forward slashes to separate path components.)

putzip

Possible targets: none
Arguments: <client filename>:<server directory>
Uploads the specified zip file to the server and unzips it in the specified directory. This
can be used to efficiently send a large number of files to the server at once.

qalias

qip

Possible targets: none
Arguments: <ip address or pattern>
Queries the alias database for players connecting from that ip. Queries can be an exact
addreess, ?qip 216.34.65.%, or ?qip 216.34.65.0/24.

quickfix

Requires module: quickfix
Possible targets: none
Arguments: <limiting text>
Lets you quickly change arena settings. This will display some list of settings with their
current values and allow you to change them. The argument to this command can be used
to limit the list of settings displayed.

rawquery

Possible targets: none
Arguments: <sql code>
Performs a custom sql query on the alias data. The text you type after ?rawquery will
be used as the WHERE clause in the query. Examples: ?rawquery name like ’%blah%’
?rawquery macid = 34127563 order by lastseen desc

reloadconf

Possible targets: none
Arguments: none
Causes the server to check all config files for modifications since they were last loaded, and
reload any modified files.

22

resetgame

Possible targets: none
Arguments: none
Resets soccer game scores and balls.

rmmod

Possible targets: none
Arguments: <module name>
Attempts to unload the specified module from the server.

score

Possible targets: none
Arguments: none
Returns score of current soccer game.

scorereset

Possible targets: ...
Arguments: ...

send

Possible targets: player
Arguments: <arena name>
Sends target player to the named arena. (Works on Continuum users only.)

seta

Possible targets: none
Arguments: section:key=value
Sets the value of an arena setting. Make sure there are no spaces around either the colon
or the equals sign.

setcm

Possible targets: player or arena
Arguments: see description
Modifies the chat mask for the target player, or if no target, for the current arena. The ar-
guments must all be of the form (-|+)(pub|pubmacro|freq|nmefreq|priv|chat|modchat|all)
or -time <seconds>. A minus sign and then a word disables that type of chat, and a
plus sign enables it. The special type all means to apply the plus or minus to all of the
above types. -time lets you specify a timeout in seconds. The mask will be effective for
that time, even across logouts.

23

Examples:

• If someone is spamming public macros: :player:?setcm -pubmacro -time 600

• To disable all blue messages for this arena: ?setcm -pub -pubmacro

• An equivalent to *shutup: :player:?setcm -all

• To restore chat to normal: ?setcm +all

Current limitations: You can’t currently restrict a particular frequency. Leaving and
entering an arena will remove a player’s chat mask, unless it has a timeout.

setfreq

Possible targets: player, freq, or arena
Arguments: <freq number>
Moves the target player to the specified freq.

setg

Possible targets: none
Arguments: section:key=value
Sets the value of a global setting. Make sure there are no spaces around either the colon
or the equals sign.

setgroup

Possible targets: player
Arguments: [-a] [-p] <group name>
Assigns the group given as an argument to the target player. The player must be in group
default, or the server will refuse to change his group. Additionally, the player giving the
command must have an appropriate capability: setgroup foo, where foo is the group
that he’s trying to set the target to.

The optional -p means to assign the group permanently. Otherwise, when the target
player logs out or changes arenas, the group will be lost.

The optional -a means to make the assignment local to the current arena, rather than
being valid in the entire zone.

setscore

Possible targets: none
Arguments: <freq 0 score> [<freq 1 score> [... [<freq 7 score>]]]
Changes score of current soccer game, based on arguments. Only supports first eight freqs,
and arena must be in absolute scoring mode (Soccer:CapturePoints < 0).

24

setship

Possible targets: player, freq, or arena
Arguments: <ship number>
Sets the target player to the specified ship. The argument must be a number from 1
(Warbird) to 8 (Shark), or 9 (Spec).

shipreset

Possible targets: player, freq, or arena
Arguments: none
Resets the target players’ ship(s).

shutdown

Possible targets: none
Arguments: [-r]
Immediately shuts down the server, exiting with EXIT NONE. If -r is specified, exit with
EXIT RECYCLE instead. The run-asss script will notice EXIT RECYCLE and restart the
server.

specall

Possible targets: player, freq, or arena
Arguments: none
Sends all of the targets to spectator mode.

stats

Possible targets: player or none
Arguments: none
Prints out some basic statistics about the target player, or if no target, yourself.

time

Possible targets: none
Arguments: none
Returns amount of time left in current game.

timer

Possible targets: none
Arguments: <minutes>[:<seconds>]
Set arena timer to minutes:seconds, only in arenas with TimedGame setting off. Note,
that the seconds part is optional, but minutes must always be defined (even if zero). If
successful, server replies with ?time response.

25

timereset

Possible targets: none
Arguments: none
Reset a timed game, but only in arenas with Misc:TimedGame in use.

turfinfo

Requires module: turf reward
Possible targets: none
Arguments: none
Displays the current settings / requirements to recieve awards.

turfresetflags

Requires module: turf reward
Possible targets: none
Arguments: none
Resets the turf reward module’s and flags module’s flag data in your current arena.

turfresettimer

Requires module: turf reward
Possible targets: none
Arguments: none
Resets the ding timer in your current arena.

turfstats

Requires module: turf stats
Possible targets: none
Arguments: none
Gets stats to previous dings.

turftime

Requires module: turf reward
Possible targets: none
Arguments: none
Displays the amount of time till next ding.

unlock

Possible targets: player, freq, or arena
Arguments: [-n]
Unlocks the specified targets so that they can now change ships. An optional -n notifies
players of their change in status.

26

unlockarena

Possible targets: arena
Arguments: [-n] [-a]
Changes the default locked state for the arena so entering players will not be locked to
spectator mode. Also unlocks everyone currently in the arena to their ships The -n options
means to notify players of their change in status. The -a option means to only change the
arena’s state, and not unlock current players.

uptime

Possible targets: none
Arguments: none
Displays how long the server has been running.

usage

Possible targets: player or none
Arguments: none
Displays the usage information (current hours and minutes logged in, and total hours and
minutes logged in), as well as the first login time, of the target player, or you if no target.

userdbadm

Possible targets: none
Arguments: status—drop—connect
The subcommand ’status’ reports the status of the user database server connection. ’drop’
disconnects the connection if it’s up, and ’connect’ reconnects after dropping or failed login.

userid

Possible targets: player or none
Arguments: none
Displays the user database id of the target player, or yours if no target.

version

Possible targets: none
Arguments: none
Prints out the version and compilation date of the server. It might also print out some
information about the machine that it’s running on.

warn

Possible targets: none
Arguments: <message>
Send a warning message to a player.

27

warpto

Possible targets: player, freq, or arena
Arguments: <x coord> <y coord>
Warps target player to coordinate x,y.

watchdamage

Possible targets: player, freq, none
Arguments: [0 or 1]
Turns damage watching on and off. If sent to a player, an argument of 1 turns it on, 0
turns it off, and no argument toggles. If sent as a public command, only ?watchdamage 0
is meaningful, and it turns off damage watching on all players.

z

Possible targets: none
Arguments: <text>
Displays the text as an arena (green) message to the whole zone.

10 Configuration Reference

All config files used by asss (except modules.conf) have the same format and conventions.
The format is roughly based on, and is backwards compatible with, the Windows .ini file
format, so server.cfg files can be used as-is, although you’ll probably need to add a few
settings to get things working well.

Config files are processed line-by-line. All leading and trailing whitespace is ignored.
A line is a comment if the first character (ignoring whitespace) is a semicolon or a forward
slash. If the first character is a pound sign, it signals a preprocessor directive. These
directives work very much like C preprocessor directives: #include allows one config file
to include another. #define allows macros to be defined. Macros cannot currently take
arguments. To reference the definition of a macro, you have to use $(MACRONAME), not just
the name of the macro. (The parens can be omitted if the character after the end of the
macro name isn’t alphanumeric.) #ifdef, #ifndef, #else, and #endif allow conditional
inclusion of sections based on whether a specific macro is defined or not. If a line ends
with a backslash, it denotes a line continuation: the following line of the file (or more if
that line ends with a backslash) is appended to the original line before it is processed.

The start of a section is a line starting with an open bracket and ending with a closing
bracket. The text between the brackets is the section name. Any line containing an equals
sign is a value: the text before the equals is the key name (minus leading and trailing
whitespace) and the text after (again minus whitespace) is the value. Section names and
values are case-insensitive, but the case of values is preserved. Lines that don’t contain
an equals sign also specify keys, and their associated value is the empty string. Value-less
keys are used primarily in the capability manager, where the presence or absence of a
capability is all that’s important.

28

If a key name contains a colon, it is treated specially: the text before the colon is
treated as the section name for this key only (it doesn’t modify the idea of the “current
section”) and the text after the colon is the key name.

The following sections describe specific settings. They are sorted alphabetically by
section and then by key. The settings are listed with the section and key names separated
by a colon. The section name “All” isn’t a real section name but means the setting is
present in a section for each ship.

10.1 Global settings

Billing:IP
Type: String
The ip address of the user database server (no dns hostnames allowed).

Billing:LocalChatPrefix
Type: String
Secret prefix to prepend to local chats

Billing:Password
Type: String
The password to log in to the user database server with.

Billing:Port
Type: Integer
Default: 1850
The port to connect to on the user database server.

Billing:Proxy
Type: String
This setting allows you to specify an external program that will handle the billing server
connection. The program should be prepared to speak the asss billing protocol over its
standard input and output. It will get two command line arguments, which are the ip
and port of the billing server, as specified in the Billing:IP and Billing:Port settings. The
program name should either be an absolute pathname or be located on your $PATH. */

Billing:RetryInterval
Type: Integer
Default: 180
How many seconds to wait between tries to connect to the user database server.

Billing:ScoreID
Type: Integer
Default: 0
Score realm.

Billing:ServerID

29

Type: Integer
Default: 0
ServerID identifying zone to user database server.

Billing:ServerName
Type: String
The server name to send to the user database server.

Billing:ServerNetwork
Type: String
The network name to send to the billing server. A network name should identify a group
of servers (e.g., SSCX).

Billing:StaffChatPrefix
Type: String
Secret prefix to prepend to staff chats

Billing:StaffChats
Type: String
Comma separated staff zone local list.

Chat:FloodLimit
Type: Integer
Default: 10
How many messages needed to be sent in a short period of time (about a second) to qualify
for chat flooding.

Chat:FloodShutup
Type: Integer
Default: 60
How many seconds to disable chat for a player that is flooding chat messages.

Chat:MessageReliable
Type: Boolean
Default: Yes
Whether to send chat messages reliably.

Config:CheckModifiedFilesInterval
Type: Integer
Default: 1500
How often to check for modified config files on disk (in ticks).

Config:FlushDirtyValuesInterval
Type: Integer
Default: 500
How often to write modified config settings back to disk (in ticks).

30

Directory:Description
Type: String
The server description to send to the directory server. See Directory:Name for more
information about the section name.

Directory:Name
Type: String
The server name to send to the directory server. Virtual servers will use section name
’Directory-<vs-name>’ for this and other settings in this section, and will fall back to
’Directory’ if that section doesn’t exist. See Net:Listen help for how to identify virtual
servers.

Directory:Password
Type: String
Default: cane
The password used to send information to the directory server. Don’t change this.

Directory:Port
Type: Integer
Default: 4991
The port to connect to for the directory server.

General:NewsFile
Type: String
Default: news.txt
The filename of the news file.

General:NewsRefreshMinutes
Type: Integer
Default: 5
How often to check for an updated news.txt.

General:PublicArenas
Type: String
Requires module: ap multipub
A list of public arena types that the server will place people in when they don’t request a
specific arena.

General:ShipChangeLimit
Type: Integer
Default: 10
The number of ship changes in a short time (about 10 seconds) before ship changing is
disabled (for about 30 seconds).

Lag:CheckInterval
Type: Integer
Default: 300

31

How often to check each player for out-of-bounds lag values (in ticks).

Log:FileFlushPeriod
Type: Integer
Default: 10
How often to flush the log file to disk (in minutes).

Log:LogFile
Type: String
Default: asss.log
The name of the log file.

mysql:database
Type: String
Requires module: mysql
The database on the mysql server to use.

mysql:hostname
Type: String
Requires module: mysql
The name of the mysql server.

mysql:password
Type: String
Requires module: mysql
The password to log in to the mysql server as.

mysql:user
Type: String
Requires module: mysql
The mysql user to log in to the server as.

Net:AntiwarpSendPercent
Type: Integer
Default: 5
Percent of position packets with antiwarp enabled to send to the whole arena.

Net:BulletPixels
Type: Integer
Default: 1500
How far away to always send bullets (in pixels).

Net:ChatListen
Type: String
Requires module: chatnet
Where to listen for chat protocol connections. Either ’port’ or ’ip:port’. Net:Listen will
be used if this is missing, except the port number specified there will be incremented by

32

two.

Net:ChatMessageDelay
Type: Integer
Default: 20 mod: chatnet
The delay between sending messages to clients using the text-based chat protocol. (To
limit bandwidth used by non-playing cilents.)

Net:DropTimeout
Type: Integer
Default: 3000
How long to get no data from a client before disconnecting him (in ticks).

Net:Listen
Type: String
A designation for a port and ip to listen on. Format is one of ’port’, ’port:connectas’, or
’ip:port:connectas’. Listen1 through Listen9 are also supported. A missing or zero-length
’ip’ field means all interfaces. The ’connectas’ field can be used to treat clients differently
depending on which port or ip they use to connect to the server. It serves as a virtual
server identifier for the rest of the server.

Net:MaxBufferDelta
Type: Integer
Default: 30
The maximum number of reliable packets to buffer for a player.

Net:PositionExtraPixels
Type: Integer
Default: 8000
How far away to send positions of players on radar.

Net:WeaponPixels
Type: Integer
Default: 2000
How far away to always send weapons (in pixels).

Persist:SyncSeconds
Type: Integer
Default: 180
The interval at which all persistent data is synced to the database.

Security:SecurityKickoff
Type: Boolean
Default: No
Whether to kick players off of the server for violating security checks.

33

10.2 Arena settings

All:AfterburnerEnergy
Type: Integer
Amount of energy required to have ’Afterburners’ activated

All:AntiWarpEnergy
Type: Integer
Amount of energy required to have ’Anti-Warp’ activated (thousanths per tick)

All:AntiWarpStatus
Type: Integer
Range: 0-2
Whether ships are allowed to receive ’Anti-Warp’ 0=no 1=yes 2=yes/start-with

All:AttachBounty
Type: Integer
Bounty required by ships to attach as a turret

All:BombBounceCount
Type: Integer
Number of times a ship’s bombs bounce before they explode on impact

All:BombFireDelay
Type: Integer
delay that ship waits after a bomb is fired until another weapon may be fired (in ticks)

All:BombFireEnergy
Type: Integer
Amount of energy it takes a ship to fire a single bomb

All:BombFireEnergyUpgrade
Type: Integer
Extra amount of energy it takes a ship to fire an upgraded bomb. i.e. L2 = BombFireEn-
ergy+BombFireEnergyUpgrade

All:BombSpeed
Type: Integer
How fast bombs travel

All:BombThrust
Type: Integer
Amount of back-thrust you receive when firing a bomb

All:BrickMax
Type: Integer
Maximum number of Bricks allowed in ships

34

All:BulletFireDelay
Type: Integer
Delay that ship waits after a bullet is fired until another weapon may be fired (in ticks)

All:BulletFireEnergy
Type: Integer
Amount of energy it takes a ship to fire a single L1 bullet

All:BulletSpeed
Type: Integer
How fast bullets travel

All:BurstMax
Type: Integer
Maximum number of Bursts allowed in ships

All:BurstShrapnel
Type: Integer
Number of bullets released when a ’Burst’ is activated

All:BurstSpeed
Type: Integer
How fast the burst shrapnel is for this ship

All:CloakEnergy
Type: Integer
Amount of energy required to have ’Cloak’ activated (thousanths per tick)

All:CloakStatus
Type: Integer
Range: 0-2
Whether ships are allowed to receive ’Cloak’ 0=no 1=yes 2=yes/start-with

All:DamageFactor
Type: Integer
How likely a the ship is to take damamage (ie. lose a prize) (0=special-case-never, 1=ex-
tremely likely, 5000=almost never)

All:DecoyMax
Type: Integer
Maximum number of Decoys allowed in ships

All:DisableFastShooting
Type: Boolean
If firing bullets, bombs, or thors is disabled after using afterburners (1=enabled) (Cont
.36+)

35

All:DoubleBarrel
Type: Boolean
Whether ships fire with double barrel bullets

All:EmpBomb
Type: Boolean
Whether ships fire EMP bombs

All:Gravity
Type: Integer
How strong of an effect the wormhole has on this ship (0 = none)

All:GravityTopSpeed
Type: Integer
Ship are allowed to move faster than their maximum speed while effected by a wormhole.
This determines how much faster they can go (0 = no extra speed)

All:InitialBombs
Type: Other
Range: 0-3
Initial level a ship’s bombs fire

All:InitialBounty
Type: Integer
Number of ’Greens’ given to ships when they start

All:InitialBrick
Type: Integer
Initial number of Bricks given to ships when they start

All:InitialBurst
Type: Integer
Initial number of Bursts given to ships when they start

All:InitialDecoy
Type: Integer
Initial number of Decoys given to ships when they start

All:InitialEnergy
Type: Integer
Initial amount of energy that the ship can have

All:InitialGuns
Type: Integer
Range: 0-3
Initial level a ship’s guns fire

36

All:InitialPortal
Type: Integer
Initial number of Portals given to ships when they start

All:InitialRecharge
Type: Integer
Initial recharge rate, or how quickly this ship recharges its energy

All:InitialRepel
Type: Integer
Initial number of Repels given to ships when they start

All:InitialRocket
Type: Integer
Initial number of Rockets given to ships when they start

All:InitialRotation
Type: Integer
Initial rotation rate of the ship (0 = can’t rotate, 400 = full rotation in 1 second)

All:InitialSpeed
Type: Integer
Initial speed of ship (0 = can’t move)

All:InitialThor
Type: Integer
Initial number of Thor’s Hammers given to ships when they start

All:InitialThrust
Type: Integer
Initial thrust of ship (0 = none)

All:LandmineFireDelay
Type: Integer
Delay that ship waits after a mine is fired until another weapon may be fired (in ticks)

All:LandmineFireEnergy
Type: Integer
Amount of energy it takes a ship to place a single L1 mine

All:LandmineFireEnergyUpgrade
Type: Integer
Extra amount of energy it takes to place an upgraded landmine. i.e. L2 = Landmine-
FireEnergy+LandmineFireEnergyUpgrade

All:MaxBombs
Type: Integer

37

Range: 0-3
Maximum level a ship’s bombs can fire

All:MaxGuns
Type: Integer
Range: 0-3
Maximum level a ship’s guns can fire

All:MaximumEnergy
Type: Integer
Maximum amount of energy that the ship can have

All:MaximumRecharge
Type: Integer
Maximum recharge rate, or how quickly this ship recharges its energy

All:MaximumRotation
Type: Integer
Maximum rotation rate of the ship (0 = can’t rotate, 400 = full rotation in 1 second)

All:MaximumSpeed
Type: Integer
Maximum speed of ship (0 = can’t move)

All:MaximumThrust
Type: Integer
Maximum thrust of ship (0 = none)

All:MaxMines
Type: Integer
Maximum number of mines allowed in ships

All:MultiFireAngle
Type: Integer
Angle spread between multi-fire bullets and standard forward firing bullets (111 = 1 degree,
1000 = 1 ship-rotation-point)

All:MultiFireDelay
Type: Integer
Delay that ship waits after a multifire bullet is fired until another weapon may be fired (in
ticks)

All:MultiFireEnergy
Type: Integer
Amount of energy it takes a ship to fire multifire L1 bullets

All:PortalMax

38

Type: Integer
Maximum number of Portals allowed in ships

All:PrizeShareLimit
Type: Integer
Maximum bounty that ships receive Team Prizes

All:Radius
Type: Integer
Default: 14
Range: 0-255
The ship’s radius from center to outside, in pixels. (Cont .37+)

All:RepelMax
Type: Integer
Maximum number of Repels allowed in ships

All:RocketMax
Type: Integer
Maximum number of Rockets allowed in ships

All:RocketTime
Type: Integer
How long a Rocket lasts (in ticks)

All:SeeBombLevel
Type: Integer
Range: 0-4
If ship can see bombs on radar (0=Disabled, 1=All, 2=L2 and up, 3=L3 and up, 4=L4
bombs only)

All:SeeMines
Type: Boolean
Whether ships see mines on radar

All:ShieldsTime
Type: Integer
How long Shields lasts on the ship (in ticks)

All:ShrapnelMax
Type: Integer
Maximum amount of shrapnel released from a ship’s bomb

All:ShrapnelRate
Type: Integer
Amount of additional shrapnel gained by a ’Shrapnel Upgrade’ prize.

39

All:SoccerBallFriction
Type: Integer
Amount the friction on the soccer ball (how quickly it slows down – higher numbers mean
faster slowdown)

All:SoccerBallProximity
Type: Integer
How close the player must be in order to pick up ball (in pixels)

All:SoccerBallSpeed
Type: Integer
Initial speed given to the ball when fired by the carrier

All:SoccerThrowTime
Type: Integer
Time player has to carry soccer ball (in ticks)

All:StealthEnergy
Type: Integer
Amount of energy required to have ’Stealth’ activated (thousanths per tick)

All:StealthStatus
Type: Integer
Range: 0-2
Whether ships are allowed to receive ’Stealth’ 0=no 1=yes 2=yes/start-with

All:SuperTime
Type: Integer
How long Super lasts on the ship (in ticks)

All:ThorMax
Type: Integer
Maximum number of Thor’s Hammers allowed in ships

All:TurretLimit
Type: Integer
Number of turrets allowed on a ship

All:TurretSpeedPenalty
Type: Integer
Amount the ship’s speed is decreased with a turret riding

All:TurretThrustPenalty
Type: Integer
Amount the ship’s thrust is decreased with a turret riding

All:UpgradeEnergy

40

Type: Integer
Amount added per ’Energy Upgrade’ Prize

All:UpgradeRecharge
Type: Integer
Amount added per ’Recharge Rate’ Prize

All:UpgradeRotation
Type: Integer
Amount added per ’Rotation’ Prize

All:UpgradeSpeed
Type: Integer
Amount added per ’Speed’ Prize

All:UpgradeThrust
Type: Integer
Amount added per ’Thruster’ Prize

All:XRadarEnergy
Type: Integer
Amount of energy required to have ’X-Radar’ activated (thousanths per tick)

All:XRadarStatus
Type: Integer
Range: 0-2
Whether ships are allowed to receive ’X-Radar’ 0=no 1=yes 2=yes/start-with

Bomb:BBombDamagePercent
Type: Integer
Percentage of normal damage applied to a bouncing bomb (in 0.1%)

Bomb:BombAliveTime
Type: Integer
Time bomb is alive (in ticks)

Bomb:BombDamageLevel
Type: Integer
Amount of damage a bomb causes at its center point (for all bomb levels)

Bomb:BombExplodeDelay
Type: Integer
How long after the proximity sensor is triggered before bomb explodes

Bomb:BombExplodePixels
Type: Integer
Blast radius in pixels for an L1 bomb (L2 bombs double this, L3 bombs triple this)

41

Bomb:BombSafety
Type: Boolean
Whether proximity bombs have a firing safety. If enemy ship is within proximity radius,
will it allow you to fire

Bomb:EBombDamagePercent
Type: Integer
Percentage of normal damage applied to an EMP bomb (in 0.1%)

Bomb:EBombShutdownTime
Type: Integer
Maximum time recharge is stopped on players hit with an EMP bomb

Bomb:JitterTime
Type: Integer
How long the screen jitters from a bomb hit (in ticks)

Bomb:ProximityDistance
Type: Integer
Radius of proximity trigger in tiles (each bomb level adds 1 to this amount)

Brick:BrickSpan
Type: Integer
Default: 10
The maximum length of a dropped brick.

Brick:BrickTime
Type: Integer
How long bricks last (in ticks)

Brick:CountBricksAsWalls
Type: Boolean
Default: Yes
Whether bricks snap to the edges of other bricks (as opposed to only snapping to walls).

Bullet:BulletAliveTime
Type: Integer
How long bullets live before disappearing (in ticks)

Bullet:BulletDamageLevel
Type: Integer
Maximum amount of damage that a L1 bullet will cause

Bullet:BulletDamageUpgrade
Type: Integer
Amount of extra damage each bullet level will cause

42

Bullet:ExactDamage
Type: Boolean
Default: No
Whether to use exact bullet damage (Cont .36+)

Burst:BurstDamageLevel
Type: Integer
Maximum amount of damage caused by a single burst bullet

Chat:RestrictChat
Type: Integer
Default: 0
This specifies an initial chat mask for the arena. Don’t use this unless you know what
you’re doing.

Cost:PurchaseAnytime
Type: Boolean
Default: No
Whether players can buy items outside a safe zone.

Door:DoorDelay
Type: Integer
How often doors attempt to switch their state

Door:DoorMode
Type: Integer
Door mode (-2=all doors completely random, -1=weighted random (some doors open more
often than others), 0-255=fixed doors (1 bit of byte for each door specifying whether it is
open or not)

Flag:CarryFlags
Type: Integer
Whether the flags can be picked up and carried (0=no, 1=yes, 2=yes-one at a time)

Flag:DropCenter
Type: Boolean
Default: No
Whether flags dropped normally go in the center of the map, as opposed to near the player.

Flag:DropOwned
Type: Boolean
Default: Yes
Whether flags you drop are owned by your team.

Flag:DropRadius
Type: Integer
Default: 2

43

How far from a player do dropped flags appear (in tiles).

Flag:EnterGameFlaggingDelay
Type: Integer
Time a new player must wait before they are allowed to see flags

Flag:FlagBlankDelay
Type: Integer
Amount of time that a user can get no data from server before flags are hidden from view
for 10 seconds

Flag:FlagCount
Type: Other
Default: 0
Range: 0-256
How many flags are present in this arena.

Flag:FlagDropDelay
Type: Integer
Time before flag is dropped by carrier (0=never)

Flag:FlagDropResetReward
Type: Integer
Minimum kill reward that a player must get in order to have his flag drop timer reset

Flag:FlaggerBombFireDelay
Type: Integer
Delay given to flaggers for firing bombs (zero is ships normal firing rate) (do not set this
number less than 20)

Flag:FlaggerBombUpgrade
Type: Boolean
Whether the flaggers get a bomb upgrade

Flag:FlaggerDamagePercent
Type: Integer
Percentage of normal damage received by flaggers (in 0.1%)

Flag:FlaggerFireCostPercent
Type: Integer
Percentage of normal weapon firing cost for flaggers (in 0.1%)

Flag:FlaggerGunUpgrade
Type: Boolean
Whether the flaggers get a gun upgrade

Flag:FlaggerKillMultiplier

44

Type: Integer
Number of times more points are given to a flagger (1 = double points, 2 = triple points)

Flag:FlaggerOnRadar
Type: Boolean
Whether the flaggers appear on radar in red

Flag:FlaggerSpeedAdjustment
Type: Integer
Amount of speed adjustment player carrying flag gets (negative numbers mean slower)

Flag:FlaggerThrustAdjustment
Type: Integer
Amount of thrust adjustment player carrying flag gets (negative numbers mean less thrust)

Flag:FlagReward
Type: Integer
Requires module: points flag
Default: 5000
The basic flag reward is calculated as (players in arena)2̂ * reward / 1000.

Flag:FriendlyTransfer
Type: Boolean
Default: Yes
Whether you get a teammates flags when you kill him.

Flag:GameType
Type: Enumerated
Default: $FLAGGAME NONE
The flag game type for this arena. $FLAGGAME NONE means no flag game, $FLAGGAME BASIC
is a standard warzone or running zone game, and $FLAGGAME TURF specifies immobile
flags.

Flag:NeutCenter
Type: Boolean
Default: No
Whether flags that are neut-droped go in the center, as opposed to near the player who
dropped them.

Flag:NeutOwned
Type: Boolean
Default: No
Whether flags you neut-drop are owned by your team.

Flag:NoDataFlagDropDelay
Type: Integer
Amount of time that a user can get no data from server before flags he is carrying are

45

dropped

Flag:PersistentTurfOwners
Type: Boolean
Default: Yes
Whether ownership of turf flags persists even when the arena is empty (or the server
crashes).

Flag:ResetDelay
Type: Integer
Default: 0
The length of the delay between flag games.

Flag:SafeCenter
Type: Boolean
Default: No
Whether flags dropped from a safe zone spawn in the center, as opposed to near the safe
zone player.

Flag:SafeOwned
Type: Boolean
Default: Yes
Whether flags dropped from a safe zone are owned by your team, as opposed to neutral.

Flag:SpawnRadius
Type: Integer
Default: 50
How far from the spawn center that new flags spawn (in tiles).

Flag:SpawnX
Type: Integer
Default: 512
The X coordinate that new flags spawn at (in tiles).

Flag:SpawnY
Type: Integer
Default: 512
The Y coordinate that new flags spawn at (in tiles).

Flag:SplitPoints
Type: Boolean
Default: No
Whether to split a flag reward between the members of a freq or give them each the full
amount.

Flag:TKCenter
Type: Boolean

46

Default: No
Whether flags dropped by a team-kill spawn in the center, as opposed to near the killed
player.

Flag:TKOwned
Type: Boolean
Default: Yes
Whether flags dropped by a team-kill are owned by your team, as opposed to neutral.

General:DesiredPlaying
Type: Integer
Requires module: ap multipub
Default: 15
This controls when the server will create new public arenas.

General:LevelFiles
Type: String
A list of extra files to send to the client for downloading. A ’+’ before any file means it’s
marked as optional.

General:Map
Type: String
The name of the level file for this arena.

General:MaxPlaying
Type: Integer
Default: 100
This is the most players that will be allowed to play in the arena at once. Zero means no
limit.

General:NeedCap
Type: String
Requires module: arenaperm
If this setting is present for an arena, any player entering the arena must have the capability
specified this setting. This can be used to restrict arenas to certain groups of players.

General:ScoreGroup
Type: String
If this is set, it will be used as the score identifier for shared scores for this arena (unshared
scores, e.g. per-game scores, always use the arena name as the identifier). Setting this to
the same value in several different arenas will cause them to share scores.

Kill:BountyIncreaseForKill
Type: Integer
Number of points added to players bounty each time he kills an opponent

Kill:EnterDelay

47

Type: Integer
How long after a player dies before he can re-enter the game (in ticks)

Kill:FlagValue
Type: Integer
Default: 100
The number of extra points to give for each flag a killed player was carrying.

Kill:JackpotBountyPercent
Type: Integer
Default: 0
The percent of a player’s bounty added to the jackpot on each kill. Units: 0.1%.

Kill:MaxBonus
Type: Integer
FIXME: fill this in

Kill:MaxPenalty
Type: Integer
FIXME: fill this in

Kill:RewardBase
Type: Integer
FIXME: fill this in

Lag:C2SLossToDisallowFlags
Type: Integer
Default: 50
The C2S packetloss when a player isn’t allowed to pick up flags or balls. Units 0.1%.

Lag:C2SLossToSpec
Type: Integer
Default: 150
The C2S packetloss at which to force a player to spec. Units 0.1%.

Lag:PingToDisallowFlags
Type: Integer
Default: 500
The average ping when a player isn’t allowed to pick up flags or balls.

Lag:PingToIgnoreAllWeapons
Type: Integer
Default: 1000
The average ping when all weapons should be ignored.

Lag:PingToSpec
Type: Integer

48

Default: 600
The average ping at which to force a player to spec.

Lag:PingToStartIgnoringWeapons
Type: Integer
Default: 300
The average ping to start ignoring weapons at.

Lag:S2CLossToDisallowFlags
Type: Integer
Default: 50
The S2C packetloss when a player isn’t allowed to pick up flags or balls. Units 0.1%.

Lag:S2CLossToIgnoreAllWeapons
Type: Integer
Default: 500
The S2C packetloss when all weapons should be ignored. Units 0.1%.

Lag:S2CLossToSpec
Type: Integer
Default: 150
The S2C packetloss at which to force a player to spec. Units 0.1%.

Lag:S2CLossToStartIgnoringWeapons
Type: Integer
Default: 40
The S2C packetloss to start ignoring weapons at. Units 0.1%.

Lag:SpikeToSpec
Type: Integer
Default: 3000
The amount of time the server can get no data from a player before forcing him to spectator
mode (in ms).

Lag:WeaponLossToDisallowFlags
Type: Integer
Default: 50
The weapon packetloss when a player isn’t allowed to pick up flags or balls. Units 0.1%.

Lag:WeaponLossToIgnoreAllWeapons
Type: Integer
Default: 500
The weapon packetloss when all weapons should be ignored. Units 0.1%.

Lag:WeaponLossToSpec
Type: Integer
Default: 150

49

The weapon packetloss at which to force a player to spec. Units 0.1%.

Lag:WeaponLossToStartIgnoringWeapons
Type: Integer
Default: 40
The weapon packetloss to start ignoring weapons at. Units 0.1%.

Latency:ClientSlowPacketSampleSize
Type: Integer
Number of packets to sample S2C before checking for kickout

Latency:ClientSlowPacketTime
Type: Integer
Amount of latency S2C that constitutes a slow packet

Latency:S2CNoDataKickoutDelay
Type: Integer
Amount of time a user can receive no data from server before connection is terminated

Latency:SendRoutePercent
Type: Integer
Percentage of the ping time that is spent on the C2S portion of the ping (used in more
accurately syncronizing clocks)

Message:AllowAudioMessages
Type: Boolean
Whether players can send audio messages

Mine:MineAliveTime
Type: Integer
Time that mines are active (in ticks)

Mine:TeamMaxMines
Type: Integer
Maximum number of mines allowed to be placed by an entire team

Misc:ActivateAppShutdownTime
Type: Integer
Amount of time a ship is shutdown after application is reactivated

Misc:AllowSavedShips
Type: Integer
Whether saved ships are allowed (do not allow saved ship in zones where sub-arenas may
have differing parameters)

Misc:AntiWarpSettleDelay
Type: Integer

50

How many ticks to activate a fake antiwarp after attaching, portaling, or warping.

Misc:BounceFactor
Type: Integer
How bouncy the walls are (16 = no speed loss)

Misc:DecoyAliveTime
Type: Integer
Time a decoy is alive (in ticks)

Misc:DisableBallKilling
Type: Boolean
Default: No
Whether to disable ball killing in safe zones (Cont .38+)

Misc:DisableBallThroughWalls
Type: Boolean
Default: No
Whether to disable ball-passing through walls (Cont .38+)

Misc:DisableScreenshot
Type: Boolean
Default: No
Whether to disable Continuum’s screenshot feature (Cont .37+)

Misc:DontShareBrick
Type: Boolean
Default: No
Whether Brick greens don’t go to the whole team.

Misc:DontShareBurst
Type: Boolean
Default: No
Whether Burst greens don’t go to the whole team.

Misc:DontShareThor
Type: Boolean
Default: No
Whether Thor greens don’t go to the whole team.

Misc:ExtraPositionData
Type: Integer
Whether regular players receive sysop data about a ship

Misc:FrequencyShift
Type: Integer
Amount of random frequency shift applied to sounds in the game

51

Misc:GreetMessage
Type: String
The message to send to each player on entering the arena.

Misc:MaxXres
Type: Integer
Default: 0
Maximum screen width allowed in the arena. Zero means no limit.

Misc:MaxYres
Type: Integer
Default: 0
Maximum screen height allowed in the arena. Zero means no limit.

Misc:NearDeathLevel
Type: Integer
Amount of energy that constitutes a near-death experience (ships bounty will be decreased
by 1 when this occurs – used for dueling zone)

Misc:SafetyLimit
Type: Integer
Amount of time that can be spent in the safe zone (in ticks)

Misc:SeeEnergy
Type: Enumerated
Default: $SEE NONE
Whose energy levels everyone can see: $SEE NONE means nobody else’s, $SEE ALL is
everyone’s, $SEE TEAM is only teammates.

Misc:SendPositionDelay
Type: Integer
Amount of time between position packets sent by client

Misc:SheepMessage
Type: String
The message that appears when someone says ?sheep

Misc:SlowFrameCheck
Type: Integer
Whether to check for slow frames on the client (possible cheat technique) (flawed on some
machines, do not use)

Misc:SpecSeeEnergy
Type: Enumerated
Default: $SEE NONE
Whose energy levels spectators can see. The options are the same as for Misc:SeeEnergy,
with one addition: $SEE SPEC means only the player you’re spectating.

52

Misc:SpecSeeExtra
Type: Boolean
Default: Yes
Whether spectators can see extra data for the person they’re spectating.

Misc:TeamKillPoints
Type: Boolean
Default: No
Whether points are awarded for a team-kill.

Misc:TickerDelay
Type: Integer
Amount of time between ticker help messages

Misc:TimedGame
Type: Integer
Default: 0
How long the game timer lasts (in ticks). Zero to disable.

Misc:VictoryMusic
Type: Integer
Whether the zone plays victory music or not

Misc:WarpPointDelay
Type: Integer
How long a portal is active

Misc:WarpRadiusLimit
Type: Integer
When ships are randomly placed in the arena, this parameter will limit how far from the
center of the arena they can be placed (1024=anywhere)

Modules:AttachModules
Type: String
This is a list of modules that you want to take effect in this arena. Not all modules need
to be attached to arenas to function, but some do.

Periodic:RewardDelay
Type: Integer
Default: 0
The interval between periodic rewards (in ticks). Zero to disable.

Periodic:RewardMinimumPlayers
Type: Integer
Default: 0
The minimum players necessary in the arena to give out periodic rewards.

53

Periodic:RewardPoints
Type: Integer
Requires module: points periodic
Default: 100
Periodic rewards are calculated as follows: If this setting is positive, you get this many
points per flag. If it’s negative, you get it’s absolute value points per flag, times the number
of players in the arena.

Prize:DeathPrizeTime
Type: Integer
How long the prize exists that appears after killing somebody

Prize:EngineShutdownTime
Type: Integer
Time the player is affected by an ’Engine Shutdown’ Prize (in ticks)

Prize:MinimumVirtual
Type: Integer
Distance from center of arena that prizes/flags/soccer-balls will spawn

Prize:MultiPrizeCount
Type: Integer
Number of random greens given with a MultiPrize

Prize:PrizeDelay
Type: Integer
How often prizes are regenerated (in ticks)

Prize:PrizeFactor
Type: Integer
Number of prizes hidden is based on number of players in game. This number adjusts the
formula, higher numbers mean more prizes. (Note: 10000 is max, 10 greens per person)

Prize:PrizeHideCount
Type: Integer
Number of prizes that are regenerated every PrizeDelay

Prize:PrizeMaxExist
Type: Integer
Maximum amount of time that a hidden prize will remain on screen. (actual time is
random)

Prize:PrizeMinExist
Type: Integer
Minimum amount of time that a hidden prize will remain on screen. (actual time is
random)

54

Prize:PrizeNegativeFactor
Type: Integer
Odds of getting a negative prize. (1 = every prize, 32000 = extremely rare)

Prize:TakePrizeReliable
Type: Integer
Whether prize packets are sent reliably (C2S)

Prize:UpgradeVirtual
Type: Integer
Amount of additional distance added to MinimumVirtual for each player that is in the
game

PrizeWeight:AllWeapons
Type: Integer
Likelihood of ’Super!’ prize appearing

PrizeWeight:AntiWarp
Type: Integer
Likelihood of ’AntiWarp’ prize appearing

PrizeWeight:Bomb
Type: Integer
Likelihood of ’Bomb Upgrade’ prize appearing

PrizeWeight:BouncingBullets
Type: Integer
Likelihood of ’Bouncing Bullets’ prize appearing

PrizeWeight:Brick
Type: Integer
Likelihood of ’Brick’ prize appearing

PrizeWeight:Burst
Type: Integer
Likelihood of ’Burst’ prize appearing

PrizeWeight:Cloak
Type: Integer
Likelihood of ’Cloak’ prize appearing

PrizeWeight:Decoy
Type: Integer
Likelihood of ’Decoy’ prize appearing

PrizeWeight:Energy
Type: Integer

55

Likelihood of ’Energy Upgrade’ prize appearing

PrizeWeight:Glue
Type: Integer
Likelihood of ’Engine Shutdown’ prize appearing

PrizeWeight:Gun
Type: Integer
Likelihood of ’Gun Upgrade’ prize appearing

PrizeWeight:MultiFire
Type: Integer
Likelihood of ’MultiFire’ prize appearing

PrizeWeight:MultiPrize
Type: Integer
Likelihood of ’Multi-Prize’ prize appearing

PrizeWeight:Portal
Type: Integer
Likelihood of ’Portal’ prize appearing

PrizeWeight:Proximity
Type: Integer
Likelihood of ’Proximity Bomb’ prize appearing

PrizeWeight:QuickCharge
Type: Integer
Likelihood of ’Recharge’ prize appearing

PrizeWeight:Recharge
Type: Integer
Likelihood of ’Full Charge’ prize appearing (not ’Recharge’)

PrizeWeight:Repel
Type: Integer
Likelihood of ’Repel’ prize appearing

PrizeWeight:Rocket
Type: Integer
Likelihood of ’Rocket’ prize appearing

PrizeWeight:Rotation
Type: Integer
Likelihood of ’Rotation’ prize appearing

PrizeWeight:Shields
Type: Integer

56

Likelihood of ’Shields’ prize appearing

PrizeWeight:Shrapnel
Type: Integer
Likelihood of ’Shrapnel Upgrade’ prize appearing

PrizeWeight:Stealth
Type: Integer
Likelihood of ’Stealth’ prize appearing

PrizeWeight:Thor
Type: Integer
Likelihood of ’Thor’ prize appearing

PrizeWeight:Thruster
Type: Integer
Likelihood of ’Thruster’ prize appearing

PrizeWeight:TopSpeed
Type: Integer
Likelihood of ’Speed’ prize appearing

PrizeWeight:Warp
Type: Integer
Likelihood of ’Warp’ prize appearing

PrizeWeight:XRadar
Type: Integer
Likelihood of ’XRadar’ prize appearing

Radar:MapZoomFactor
Type: Integer
A number representing how far you can see on radar

Radar:RadarMode
Type: Integer
Radar mode (0=normal, 1=half/half, 2=quarters, 3=half/half-see team mates, 4=quarters-
see team mates)

Radar:RadarNeutralSize
Type: Integer
Size of area between blinded radar zones (in pixels)

Repel:RepelDistance
Type: Integer
Number of pixels from the player that are affected by a repel

Repel:RepelSpeed

57

Type: Integer
Speed at which players are repelled

Repel:RepelTime
Type: Integer
Time players are affected by the repel (in ticks)

Rocket:RocketSpeed
Type: Integer
Speed value given while a rocket is active

Rocket:RocketThrust
Type: Integer
Thrust value given while a rocket is active

Shrapnel:InactiveShrapDamage
Type: Integer
Amount of damage shrapnel causes in it’s first 1/4 second of life

Shrapnel:Random
Type: Boolean
Whether shrapnel spreads in circular or random patterns

Shrapnel:ShrapnelDamagePercent
Type: Integer
Percentage of normal damage applied to shrapnel (relative to bullets of same level) (in
0.1%)

Shrapnel:ShrapnelSpeed
Type: Integer
Speed that shrapnel travels

Soccer:AllowBombs
Type: Boolean
Whether the ball carrier can fire his bombs

Soccer:AllowGoalByDeath
Type: Boolean
Default: No
Whether a goal is scored if a player dies carrying the ball on a goal tile.

Soccer:AllowGuns
Type: Boolean
Whether the ball carrier can fire his guns

Soccer:BallBlankDelay
Type: Integer

58

Amount of time a player can receive no data from server and still pick up the soccer ball

Soccer:BallBounce
Type: Boolean
Whether the ball bounces off walls

Soccer:BallCount
Type: Integer
Default: 0
The number of balls in this arena.

Soccer:BallLocation
Type: Boolean
Whether the balls location is displayed at all times or not

Soccer:GoalDelay
Type: Integer
Default: 0
How long after a goal before the ball appears (in ticks).

Soccer:Mode
Type: Enumerated
Goal configuration ($GOAL ALL, $GOAL LEFTRIGHT, $GOAL TOPBOTTOM, $GOAL CORNERS 3 1,
$GOAL CORNERS 1 3, $GOAL SIDES 3 1, $GOAL SIDES 1 3)

Soccer:NewGameDelay
Type: Integer
Default: -3000
How long to wait between games. If this is negative, the actual delay is random, between
zero and the absolute value. Units: ticks.

Soccer:PassDelay
Type: Integer
How long after the ball is fired before anybody can pick it up (in ticks)

Soccer:SendTime
Type: Integer
Default: 1000
Range: 100-3000
How often the server sends ball positions (in ticks).

Soccer:SpawnRadius
Type: Integer
Default: 20
How far from the spawn center the ball can spawn (in tiles).

Soccer:SpawnX

59

Type: Integer
Default: 512
Range: 0-1023
The X coordinate that the ball spawns at (in tiles).

Soccer:SpawnY
Type: Integer
Default: 512
Range: 0-1023
The Y coordinate that the ball spawns at (in tiles).

Soccer:UseFlagger
Type: Boolean
If player with soccer ball should use the Flag:Flagger* ship adjustments or not

Spawn:TeamN-X/Y/Radius
Type: Integer
Specify spawn location and radius per team. If only Team0 variables are set, all teams
use them, if Team0 and Team1 variables are set, even teams use Team0 and odd teams
use Team1. It is possible to set spawn positions for upto 4 teams (Team0-Team3). (Cont
.38+)

Spectator:HideFlags
Type: Boolean
Default: No
Whether to show dropped flags to spectators (Cont .36+)

Spectator:NoXRadar
Type: Boolean
Default: No
Whether spectators are disallowed from having X radar (Cont .36+)

Team:AllowFreqOwners
Type: Boolean
Default: Yes
Whether to enable the freq ownership feature in this arena.

Team:DesiredTeams
Type: Integer
Default: 2
The number of teams that the freq balancer will form as players enter.

Team:FrequencyShipTypes
Type: Boolean
Default: No
If this is set, freq 0 will only be allowed to use warbirds, freq 1 can only use javelins, etc.

60

Team:IncludeSpectators
Type: Boolean
Default: No
Whether to include spectators when enforcing maximum freq sizes.

Team:InitalSpec
Type: Boolean
Default: No
If players entering the arena are always assigned to spectator mode.

Team:MaxFrequency
Type: Integer
Default: 9999
Range: 0-9999
The highest frequency allowed. Set this below PrivFreqStart to disallow private freqs.

Team:MaxPerPrivateTeam
Type: Integer
Default: 0
The maximum number of players on a private freq. Zero means no limit.

Team:MaxPerTeam
Type: Integer
Default: 0
The maximum number of players on a public freq. Zero means no limit.

Team:PrivFreqStart
Type: Integer
Default: 100
Range: 0-9999
Freqs above this value are considered private freqs.

Team:SpectatorFrequency
Type: Integer
Default: 8025
Range: 0-9999
The frequency that spectators are assigned to, by default.

Toggle:AntiWarpPixels
Type: Integer
Distance Anti-Warp affects other players (in pixels) (note: enemy must also be on radar)

TurfReward:JackpotModifier
Type: Integer
Default: 200
Modifies the number of points to award. Meaning varies based on reward algorithm being
used. For $REWARD STD: jackpot = JackpotModifier * # players

61

TurfReward:MinFlags
Type: Integer
Default: 1
The minimum number of flags needed to be owned by a freq for that team to be eligable
to recieve points.

TurfReward:MinFlagsPercent
Type: Integer
Default: 0
The minimum percent of flags needed to be owned by a freq for that team to be eligable
to recieve points. (ex. 18532 means 18.532%)

TurfReward:MinPercent
Type: Integer
Default: 0
The minimum percent of points needed to be owned by a freq for that team to be eligable
to recieve points. (ex. 18532 means 18.532%)

TurfReward:MinPlayersArena
Type: Integer
Default: 6
The minimum number of players needed in the arena for anyone to be eligable to recieve
points.

TurfReward:MinPlayersFreq
Type: Integer
Default: 3
The minimum number of players needed on a freq for that team to be eligable to recieve
points.

TurfReward:MinTeams
Type: Integer
Default: 2
The minimum number of teams needed in the arena for anyone to be eligable to recieve
points.

TurfReward:MinWeights
Type: Integer
Default: 1
The minimum number of weights needed to be owned by a freq for that team to be eligable
to recieve points.

TurfReward:MinWeightsPercent
Type: Integer
Default: 0
The minimum percent of weights needed to be owned by a freq for that team to be eligable
to recieve points. (ex. 18532 means 18.532%)

62

TurfReward:MultiArenaID
Type: Integer
Default: 0
Used for multi-arena (cross arena) scoring only. Defines the set of arenas the arena is
associated with (parallels the idea of multicast addresses in networking). If this arena is
not using a multi-arena scoring method, set to 0 (or simply remove this setting from the
conf). Note: MultiArena scoring is not currently implemented

TurfReward:RecoverDings
Type: Integer
Default: 1
After losing a flag, the number of dings allowed to pass before a freq loses the chance
to recover. 0 means you have no chance of recovery after it dings (to recover, you must
recover before any ding occurs), 1 means it is allowed to ding once and you still have a
chance to recover (any ding after that you lost chance of full recovery), ...

TurfReward:RecoverMax
Type: Integer
Default: -1
Maximum number of times a flag may be recovered. (-1 means no max)

TurfReward:RecoverTime
Type: Integer
Default: 300
After losing a flag, the time (seconds) allowed to pass before a freq loses the chance to
recover.

TurfReward:RecoveryCutoff
Type: Enumerated
Default: $TR RECOVERY DINGS
Style of recovery cutoff to be used. $TR RECOVERY DINGS - recovery cutoff based
on RecoverDings. $TR RECOVERY TIME - recovery cutoff based on RecoverTime.
$TR RECOVERY DINGS AND TIME - recovery cutoff based on both RecoverDings and
RecoverTime.

TurfReward:RewardStyle
Type: Enumerated
Default: $REWARD STD
The reward algorithm to be used. Default is $REWARD STD for standard weighted
scoring. Other built in algorithms are: $REWARD DISABLED: disable scoring, $RE-
WARD PERIODIC: normal periodic scoring but with the stats, $REWARD FIXED PTS:
each team gets a fixed # of points based on 1st, 2nd, 3rd,... place $REWARD STD MULTI:
standard weighted scoring + this arena is scored along with other arenas simulanteously.
Note: currently only $REWARD STD and $REWARD PERIODIC are implemented.

TurfReward:SetWeights
Type: Integer

63

Default: 0
How many weights to set from cfg (16 means you want to specify Weight0 to Weight15).
If set to 0, then by default one weight is set with a value of 1.

TurfReward:TimerInitial
Type: Integer
Default: 6000
Inital turf reward ding timer period.

TurfReward:TimerInterval
Type: Integer
Default: 6000
Subsequent turf reward ding timer period.

TurfReward:WeightCalc
Type: Enumerated
Default: $TR WEIGHT DINGS
The method weights are calculated. $TR WEIGHT TIME means each weight stands for
one minute (ex: Weight004 is the weight for a flag owned for 4 minutes. $TR WEIGHT DINGS
means each weight stands for one ding of ownership (ex: Weight004 is the weight for a
flag that was owned during 4 dings

Wormhole:GravityBombs
Type: Boolean
Whether a wormhole affects bombs

Wormhole:SwitchTime
Type: Integer
How often the wormhole switches its destination

10.3 Other settings

General:AllowUnknown
File: passwd.conf
Type: Boolean
Requires module: auth file
Default: Yes
Determines whether to allow players not listed in the password file.

10.4 More detail on specific sections

10.4.1 Flags

Until I have time to rework my notes into a nice document, this will have to do:

quick guide to transition flag settings:

64

(all these go in the [Flag] section)

OLD SETTINGS TO KEEP
FlaggerOnRadar=1
FlaggerKillMultiplier=2
FlaggerGunUpgrade=1
FlaggerBombUpgrade=1
FlaggerFireCostPercent=1000
FlaggerDamagePercent=1000
FlaggerBombFireDelay=0
FlaggerSpeedAdjustment=0
FlaggerThrustAdjustment=0
CarryFlags=1 make sure this agrees with GameType (see below)
FlagDropDelay=3000
FlagDropResetReward=0
EnterGameFlaggingDelay=1000
FlagBlankDelay=200
NoDataFlagDropDelay=500

OLD SETTINGS TO CHANGE
FlagMode=1 get rid of this, there’s a new way to specify game types
FlagResetDelay=1440000 rename to ResetDelay (not currently implemented)
MaxFlags=3 change to FlagCount=3
RandomFlags=0 get rid of this, use FlagCount=5-10
FlagReward=2500 keep this
FlagRewardMode=0 change name to SplitPoints
FlagTerritoryRadius=3 get rid of this, use DropRadius
FlagTerritoryRadiusCentroid=0 get rid of this, use DropRadius
FriendlyTransfer=0 keep this the same

NEW SETTINGS
GameType = FLAGGAME_BASIC
options: FLAGGAME_NONE, FLAGGAME_BASIC, FLAGGAME_TURF, FLAGGAME_CUSTOM
basic is warzone/running with movable flags. turf is turf (be sure to
set CarryFlags=0, for now). custom means you have to load a module to
define a new game. note that those constants are in
settings/flaggames.h

SpawnX = 512
SpawnY = 512
SpawnRadius = 1024
define where flags spawn and how far from that center

DropRadius = 2
how far from a ship will flags drop

65

NeutRadius = 2
how far from a ship will neuted flags appear

DropOwned = YES
are dropped flags owned by the freq?

NeutOwned = NO
are neuted flags owned by the freq? (obviously, YES prevents neuting)

10.4.2 Energy viewing

There are two arena settings that control whether players see other player’s energy and
ship inventory (from spec):

• Misc:SpecSeeEnergy This affects what players in spec see. If it’s set to SEE_ALL,
a player will see inventory/energy for the player he is speccing, plus energy for all
other players. If it’s SEE_SPEC, a player will only see energy/inventory for the player
he is speccing. SEE_NONE will disable all extra information for speccers.

• Misc:SeeEnergy If this is set to SEE_ALL, everyone will see everyone else’s energy.
If it’s SEE_TEAM, you will only see the energy of your teammates. If it’s SEE_NONE,
no one will see other’s energy.

In addition, there are two capabilities that override the above settings. seeepd allows
players to see energy/inventory from spec, and seenrg allows energy viewing while playing.

11 Acknowledgements

Thanks to these people and groups of people:

• divine.216 for general support, lots of help testing, banner support, and many useful
suggestions.

• Mine GO BOOM for lots of bug-finding and suggestions, as well as being the first
person besides me to actually contribute code to asss.

• Stag Shot for making sure powerball isn’t left out, timer features, and other small
contributions.

• GiGaKiLLeR for contributing a turf rewards module.

• Mr. Ekted for technical help and discussions.

• ZippyDan for encouragement and comic relief.

• xalimar for shell accounts and hosting, mostly.

• numpf for design critiques and other criticism.

66

• Remnant for being the first person to log into asss (besides me, of course), and help
testing.

• The rest of the PowerBot chat for friendly conversation and entertainment.

• The Subspace Council for not dismissing this project immediately, and specifically
PriitK for information on communicating with Continuum.

• D.A.F. (not a subspace player) for conversations on design and more.

67

